A binary star
is a star system consisting of two stars orbiting around their common center of mass. The brighter star is called the primary
and the other is its companion star
, comes
, [1] or secondary
. Research between the early 1800s and today suggests that many stars are part of either binary star systems or star systems with more than two stars, called multiple star systems
. The term double star
may be used synonymously with binary star
, but more generally, a double star may be either a binary star or an optical double star
which consists of two stars with no physical connection but which appear close together in the sky as seen from the Earth. A double star may be determined to be optical if its components have sufficiently different proper motions or radial velocities, or if parallax measurements reveal its two components to be at sufficiently different distances from the Earth. Most known double stars have not yet been determined to be either bound binary star systems or optical doubles.
Binary star systems are very important in astrophysics because calculations of their orbits allow the masses of their component stars to be directly determined, which in turn allows other stellar parameters, such as radius and density, to be indirectly estimated. This also determines an empirical mass-luminosity relationship (MLR) from which the masses of single stars can be estimated.
Binary stars are often detected optically, in which case they are called visual binaries
. Many visual binaries have long orbital periods of several centuries or millennia and therefore have orbits which are uncertain or poorly known. They may also be detected by indirect techniques, such as spectroscopy (spectroscopic binaries
) or astrometry (astrometric binaries
). If a binary star happens to orbit in a plane along our line of sight, its components will mutually eclipse and transit each other; these pairs are called eclipsing binaries
, or, as they are detected by their changes in brightness during eclipses and transits, photometric binaries
.
If the orbits of components in binary star systems are close enough they can gravitationally distort their mutual outer stellar atmospheres. In some cases, these close binary systems
can exchange mass, which may bring their evolution to stages that single stars cannot attain. Examples of binaries are Algol (an eclipsing binary), Sirius, and Cygnus X-1 (of which one member is probably a black hole). Binary stars are also common as the nuclei of many planetary nebulae, and are the progenitors of both novae and type Ia supernovae.
|
BINARY STAR TICKETS
|
Discovery
The term
binary
was first used in this context by Sir
William Herschel in 1802,
when he wrote:
[2]
"If, on the contrary, two stars should really be situated very near each other, and at the same time so far insulated as not to be materially affected by the attractions of neighbouring stars, they will then compose a separate system, and remain united by the bond of their own mutual gravitation towards each other. This should be called a real double star; and any two stars that are thus mutually connected, form the binary sidereal system which we are now to consider.
"
By the modern definition, the term
binary star
is generally restricted to pairs of stars which revolve around a common centre of mass. Binary stars which can be
resolved with a telescope or
interferometric methods are known as
visual binaries
.
[3] [4] [5] Most of the known visual binary stars have not completed one whole revolution, but are observed to have travelled along a curved path or a partial arc.
[6]
The more general term
double star
is used for pairs of stars which are seen to be close together in the sky.
[7] This distinction is rarely made in languages other than
English.
Double stars may be binary systems or may be merely two stars that happen to be close together in the sky but have vastly different true distances from the Sun. The latter are termed
optical doubles
or
optical pairs
.
[8]
Since the invention of the
telescope, many pairs of
double stars have been found. Early examples include
Mizar and
Acrux. Mizar, in the
Big Dipper (
Ursa Major), was observed to be double by
Giovanni Battista Riccioli in 1650
[9] [10] (and probably earlier by
Benedetto Castelli and
Galileo).
[11] The bright southern star
Acrux, in the
Southern Cross, was discovered to be double by Father Fontenay in 1685.
John Michell was the first to suggest that double stars might be physically attached to each other when he argued in 1767 that the probability that a double star was due to a chance alignment was small.
[12] [13] William Herschel began observing double stars in 1779 and soon thereafter published catalogs of about 700 double stars.
[14] By 1803, he had observed changes in the relative positions in a number of double stars over the course of 25 years, and concluded that they must be binary systems;
[15] the first
orbit of a binary star, however, was not computed until 1827, when
Félix Savary computed the orbit of
Xi Ursae Majoris.
[16] Since this time, many more double stars have been catalogued and measured. The
Washington Double Star Catalog, a database of visual
double stars compiled by the
United States Naval Observatory, contains over 100,000 pairs of
double stars,
[17] including optical doubles as well as binary stars. Orbits are known for only a few thousand of these double stars,
[18] and most have not been ascertained to be either true binaries or optical double stars.
[19] This can be determined by observing the relative motion of the pairs. If the motion is part of an
orbit, or if the stars have similar
radial velocities and the difference in their
proper motions is small compared to their common proper motion, the pair is probably physical.
[20] One of the tasks that remains for visual observers of double stars is to obtain sufficient observations to prove or disprove gravitational connection.
Classifications
By methods of observation
Binary stars are classified into four types according to the way in which they are observed: visually, by observation;
spectroscopically, by periodic changes in
spectral lines;
photometrically, by changes in brightness caused by an eclipse; or
astrometrically, by measuring a deviation in a star's position caused by an unseen companion.
[21] Any binary star can belong to several of these classes; for example, several spectroscopic binaries are also eclipsing binaries.
Visual binaries
A
visual binary
star is a binary star for which the angular separation between the two components is great enough to permit them to be observed as a
double star in a
telescope. The
resolving power of the telescope is an important factor in the detection of visual binaries, and as telescopes become larger and more powerful an increasing number of visual binaries will be detected. The brightness of the two stars is also an important factor, as brighter stars are harder to separate, due to their glare, than dimmer ones are.
The brighter star of a visual binary is the
primary
star, and the dimmer is considered the
secondary.
In some publications (especially older ones), a faint secondary is called the
comes
(plural
comites
;
English:
companion
.) If the stars are the same brightness, the discoverer designation for the primary is customarily accepted.
[22]
The
position angle of the secondary with respect to the primary is measured, together with the angular distance between the two stars. The time of observation is also recorded. After a sufficient number of observations are recorded over a period of time, they are plotted in
polar coordinates with the primary star at the origin, and the most probable
ellipse is drawn through these points such that the
Keplerian law of areas is satisfied. This ellipse is known as the
apparent ellipse
, and is the projection of the actual elliptical
orbit of the secondary with respect to the primary on the plane of the sky. From this projected ellipse the complete elements of the orbit may be computed, with the
semi-major axis being expressed in angular units unless the
stellar parallax, and hence the distance, of the system is known.
Spectroscopic binaries
Sometimes, the only evidence of a binary star comes from the
Doppler effect on its emitted
light. In these cases, the binary consists of a pair of stars where the
spectral lines in the light emitted from each star shifts first toward the blue, then toward the red, as each moves first toward us, and then away from us, during its motion about their common
center of mass, with the period of their common orbit.
In these systems, the separation between the stars is usually very small, and the
orbital velocity very high. Unless the plane of the orbit happens to be perpendicular to the line of sight, the orbital velocities will have components in the line of sight and the observed
radial velocity of the system will vary periodically. Since radial velocity can be measured with a
spectrometer by observing the
Doppler shift of the stars'
spectral lines, the binaries detected in this manner are known as
spectroscopic binaries
. Most of these cannot be resolved as a visual binary, even with
telescopes of the highest existing
resolving power.
In some spectroscopic binaries, spectral lines from both stars are visible and the lines are alternately double and single. Such a system is known as a double-lined spectroscopic binary (often denoted "SB2"). In other systems, the spectrum of only one of the stars is seen and the lines in the spectrum shift periodically towards the blue, then towards red and back again. Such stars are known as single-lined spectroscopic binaries ("SB1").
The
orbit of a spectroscopic binary is determined by making a long series of observations of the radial velocity of one or both components of the system. The observations are plotted against time, and from the resulting curve a period is determined. If the orbit is
circular then the curve will be a
sine curve. If the orbit is
elliptical, the shape of the curve will depend on the
eccentricity of the ellipse and the orientation of the major axis with reference to the line of sight.
It is impossible to determine individually the
semi-major axis a
and the inclination of the orbit plane
i
. However, the product of the semi-major axis and the sine of the inclination (i.e.
a
sin
i
) may be determined directly in linear units (e.g. kilometres). If either
a
or
i
can be determined by other means, as in the case of eclipsing binaries, a complete solution for the orbit can be found.
[23]
Binary stars that are both visual and spectroscopic binaries are rare, and are a precious source of valuable information when found. Visual binary stars often have large true separations, with periods measured in decades to centuries; consequently, they usually have orbital speeds too small to be measured spectroscopically. Conversely, spectroscopic binary stars move fast in their orbits because they are close together, usually too close to be detected as visual binaries. Binaries that are both visual and spectroscopic thus must be relatively close to Earth.
Eclipsing binaries
An
eclipsing binary star
is a binary star in which the
orbit plane of the two
stars lies so nearly in the line of sight of the observer that the components undergo mutual
eclipses. In the case where the binary is also a spectroscopic binary and the
parallax of the system is known, the binary is quite valuable for stellar analysis.
[26] Algol is the best-known example of an eclipsing binary.
[27]
In the last decade, measurement of eclipsing binaries' fundamental parameters has become possible with 8 meter class telescopes. This makes it feasible to use them as
standard candles. Recently, they have been used to give direct distance estimates to the
LMC,
SMC,
Andromeda Galaxy and
Triangulum Galaxy. Eclipsing binaries offer a direct method to gauge the distance to galaxies to a new improved 5% level of accuracy.
[28]
Eclipsing binaries are
variable stars, not because the light of the individual components vary but because of the eclipses. The
light curve of an eclipsing binary is characterized by periods of practically constant light, with periodic drops in intensity. If one of the stars is larger than the other, one will be obscured by a total eclipse while the other will be obscured by an
annular eclipse.
The period of the
orbit of an eclipsing binary may be determined from a study of the light curve, and the relative sizes of the individual stars can be determined in terms of the radius of the orbit by observing how quickly the brightness changes as the disc of the near star slides over the disc of the distant star. If it is also a spectroscopic binary the
orbital elements can also be determined, and the mass of the stars can be determined relatively easily, which means that the relative densities of the stars can be determined in this case.
[29]
Astrometric binaries
Astronomers have discovered some stars that seemingly orbit around an empty space.
Astrometric binaries
are relatively nearby stars which can be seen to wobble around a point in space, with no visible companion. The same mathematics used for ordinary binaries can be applied to infer the
mass of the missing companion. The companion could be very dim, so that it is currently undetectable or masked by the glare of its primary, or it could be an object that emits little or no
electromagnetic radiation, for example a
neutron star.
[30]
The visible star's position is carefully measured and detected to vary, due to the gravitational influence from its counterpart. The position of the star is repeatedly measured relative to more distant stars, and then checked for periodic shifts in position. Typically this type of measurement can only be performed on nearby stars, such as those within 10
parsecs. Nearby stars often have a relatively high
proper motion, so astrometric binaries will appear to follow a
sinusoidal path across the sky.
If the companion is sufficiently massive to cause an observable shift in position of the star, then its presence can be deduced. From precise
astrometric measurements of the movement of the visible star over a sufficiently long period of time, information about the mass of the companion and its orbital period can be determined.
[31] Even though the companion is not visible, the characteristics of the system can be determined from the observations using
Kepler's
laws.
[32]
This method of detecting binaries is also
used to locate extrasolar planets orbiting a star. However, the requirements to perform this measurement are very exacting, due to the great difference in the mass ratio, and the typically long period of the planet's orbit. Detection of position shifts of a star is a very exacting science, and it is difficult to achieve the necessary precision. Space telescopes can avoid the bluring effect of the
Earth's atmosphere, resulting in more precise resolution.
By configuration of the system
Another classification is based on the distance of the stars, relative to their sizes:
[33]
Detached binaries
are binary stars where each component is within its
Roche lobe, i.e. the area where the
gravitational pull of the star itself is larger than that of the other component. The stars have no major effect on each other, and essentially evolve separately. Most binaries belong to this class.
Semidetached binary stars
are binary stars where one of the components fills the binary star's Roche lobe and the other does not. Gas from the surface of the Roche lobe filling component (donor) is transferred to the other, accreting star. The
mass transfer dominates the evolution of the system. In many cases, the inflowing gas forms an
accretion disc around the accretor.
A
contact binary
is a type of binary star in which both components of the binary fill their Roche lobes. The uppermost part of the
stellar atmospheres forms a
common envelope
that surrounds both stars. As the friction of the envelope brakes the
orbital motion, the stars may eventually merge.
[34]
Cataclysmic variables and X-ray binaries
When a binary system contains a
compact object such as a
white dwarf,
neutron star or
black hole, gas from the other, donor, star can
accrete onto the compact object. This releases
gravitational potential energy, causing the gas to become hotter and emit radiation.
Cataclysmic variables, where the compact object is a white dwarf, are examples of such systems.
[35]
In
X-ray binaries, the compact object can be either a
neutron star or a
black hole. These binaries are classified as
low-mass or
high-mass according to the mass of the donor star. High-mass X-ray binaries contain a young, early type, high-mass donor star which transfers mass by its
stellar wind, while low-mass X-ray binaries are semidetached binaries in which gas from a late-type donor star overflows the Roche lobe and falls towards the neutron star or black hole.
[36] Probably the best known example of an X-ray binary at present is the
high-mass X-ray binary Cygnus X-1. In Cygnus X-1, the mass of the unseen companion is believed to be about nine times that of our sun,
[37] far exceeding the
Tolman-Oppenheimer-Volkoff limit for the maximum theoretical mass of a neutron star. It is therefore believed to be a black hole; it was the first object for which this was widely believed.
[38]
Designations
The components of binary stars are denoted by the suffixes
A
and
B
appended to the system's designation,
A
denoting the primary and
B
the secondary. The suffix
AB
may be used to denote the pair (for example, the binary star a Centauri AB consists of the stars a Centauri A and a Centauri B.) Additional letters, such as
C
,
D
, etc., may be used for systems with more than two stars.
[39] In cases where the binary star has a
Bayer designation and is widely separated, it is possible that the members of the pair will be designated with superscripts; an example is
? Reticuli, whose components are ?
1 Reticuli and ?
2 Reticuli.
[40]
Double stars are also designated by an abbreviation giving the discoverer together with an index number.
[41] a Centauri, for example, was found to be double by Father Richaud in 1689, and so is designated
RHD 1
.
[42] These discoverer codes can be found in the
Washington Double Star Catalog.
[43]
Binary star evolution
Formation
While it is not impossible that some binaries might be created through
gravitational capture between two single stars, given the very low likelihood of such an event (three objects are actually required, as conservation of energy rules out a single gravitating body capturing another) and the high number of binaries, this cannot be the primary formation process. Also, the observation of binaries consisting of pre
main sequence stars, supports the theory that binaries are already formed during
star formation. Fragmentation of the molecular cloud during the formation of
protostars is an acceptable explanation for the formation of a binary or multiple star system.
[44] [45]
The outcome of the
three body problem, where the three stars are of comparable mass, is that eventually one of the three stars will be ejected from the system and, assuming no significant further perturbations, the remaining two will form a stable binary system.
Mass transfer and accretion
As a
main sequence star increases in size during its
evolution, it may at some point exceed its
Roche lobe, meaning that some of its matter ventures into a region where the
gravitational pull of its companion star is larger than its own.
[46] The result is that matter will transfer from one star to another through a process known as Roche Lobe overflow (RLOF), either being absorbed by direct impact or through an
accretion disc. The
mathematical point through which this transfer happens is called the first
Lagrangian point [47] It is not uncommon that the accretion disc is the brightest (and thus sometimes the only visible) element of a binary star.
If a star grows outside of its Roche lobe too fast for all abundant
matter to be transferred to the other component, it is also possible that matter will leave the system through other Lagrange points or as
stellar wind, thus being effectively lost to both components.
[48]
Since the evolution of a star is determined by its mass, the process influences the evolution of both companions, and creates stages that can not be attained by single
stars.
[49] [50]
Studies of the eclipsing ternary
Algol led to the
Algol paradox
in the theory of
stellar evolution: although components of a binary star form at the same time, and massive stars evolve much faster than the less massive ones, it was observed that the more massive component Algol A is still in the
main sequence, while the less massive Algol B is a
subgiant star at a later evolutionary stage. The paradox can be solved by
mass transfer: when the more massive star became a subgiant, it filled its
Roche lobe, and most of the mass was transferred to the other star, which is still in the main sequence. In some binaries similar to Algol, a gas flow can actually be seen.
[51]
Runaways and novae
Image:Main tycho remnant full.jpg|thumb|right160px
|A composite image of the remnants of the
SN 1572 supernova.
It is also possible for widely separated binaries to lose gravitational contact with each other during their lifetime, as a result of external perturbations. The components will then move on to evolve as single stars. A close encounter between two binary systems can also result in the gravitational disruption of both systems, with some of the stars being ejected at high velocities, leading to
runaway stars.
[52] [53]
If a
white dwarf has a close companion star that overflows its
Roche lobe, the white dwarf will steadily accrete gases from the star's outer atmosphere. These are compacted on the white dwarf's surface by its intense gravity, compressed and heated to very high temperatures as additional material is drawn in. The white dwarf consists of
degenerate matter, and so is largely unresponsive to heat, while the accreted hydrogen is not.
Hydrogen fusion can occur in a stable manner on the surface through the
CNO cycle, causing the enormous amount of energy liberated by this process to blow the remaining gases away from the white dwarf's surface. The result is an extremely bright outburst of light, known as a
nova.
[54]
In extreme cases this event can cause the white dwarf to exceed the
Chandrasekhar limit and trigger a
supernova that destroys the entire star, and is another possible cause for runaways.
[55] [56] A famous example of such an event is the supernova
SN 1572, which was observed by
Tycho Brahe. The
Hubble Space Telescope recently took a picture of the remnants of this event.
Use in astrophysics
Binaries provide the best method for
astronomers to determine the mass of a distant star. The gravitational pull between them causes them to orbit around their common center of mass. From the orbital pattern of a visual binary, or the time variation of the spectrum of a spectroscopic binary, the mass of its stars can be determined. In this way, the relation between a star's appearance (
temperature and
radius) and its mass can be found, which allows for the determination of the mass of non-binaries.
Because a large proportion of stars exist in binary systems, binaries are particularly important to our understanding of the processes by which stars form. In particular, the period and masses of the binary tell us about the amount of
angular momentum in the system. Because this is a
conserved quantity in
physics, binaries give us important clues about the conditions under which the stars were formed.
Research findings
It is estimated that approximately 1/3 of the
star systems in the
Milky Way are binary or multiple, with the remaining 2/3 consisting of single
stars.
[57]
There is a direct correlation between the
period of revolution of a binary star and the
eccentricity of its orbit, with systems of short period having smaller eccentricity. Binary stars may be found with any conceivable separation, from pairs orbiting so closely that they are practically in contact with each other, to pairs so distantly separated that their connection is indicated only by their common
proper motion through space. Among gravitationally bound binary star systems, there exists a so called
log normal distribution of periods, with the majority of these systems orbiting with a period of about 100 years. This is supporting evidence for the theory that binary systems are formed during
star formation.
[58]
In pairs where the two stars are of equal
brightness, they are also of the same
spectral type.
In systems where the brightnesses are different, the fainter star is bluer if the brighter star is a
giant star, and redder if the brighter star belongs to the
main sequence.
[59]
The mass of a star can be directly determined only from its gravitational attraction. Apart from the
Sun and stars which act as
gravitational lenses, this can be done only in binary and multiple star systems, making the binary stars an important class of stars. In the case of a visual binary star, after the orbit and the
stellar parallax of the system has been determined, the combined mass of the two stars may be obtained by a direct application of the
Keplerian harmonic law.
[60]
Unfortunately, it is impossible to obtain the complete orbit of a spectroscopic binary unless it is also a visual or an eclipsing binary, so from these objects only a determination of the joint product of mass and the
sine of the angle of inclination relative to the line of sight is possible. In the case of eclipsing binaries which are also spectroscopic binaries, it is possible to find a complete solution for the specifications (mass,
density, size,
luminosity, and approximate shape) of both members of the system.
Planets around binary stars
Science fiction has often featured
planets of binary or ternary stars as a setting. In reality, some orbital ranges are impossible for dynamical reasons (the planet would be expelled from its orbit relatively quickly, being either ejected from the system altogether or transferred to a more inner or outer orbital range), whilst other orbits present serious challenges for eventual
biospheres because of likely extreme variations in surface temperature during different parts of the orbit. Planets that orbit just one star in a binary pair are said to have "S-type" orbits, whereas those that orbit around both stars have "P-type" or "
circumbinary" orbits. It is estimated that 50–60% of binary stars are capable of supporting habitable terrestrial planets within stable orbital ranges.
[61]
Simulations have shown that the presence of a binary companion can actually improve the rate of planet formation within stable orbital zones by "stirring up" the protoplanetary disk, increasing the accretion rate of the protoplanets within.
Detecting planets in multiple star systems introduces additional technical difficulties, which may be why they are only rarely found.
[62] Examples include
PSR B1620-26 b and
Gamma Cephei.
A study of fourteen previously known planetary systems found three of these systems to be binary systems. All planets were found to be in S-type orbits around the primary star. In these three cases the secondary star was much dimmer than the primary and so was not previously detected. This discovery resulted in a recalculation of parameters for both the planet and the primary star.
[63]
Binary star examples
The large distance between the components, as well as their difference in color, make
Albireo one of the easiest observable visual binaries. The brightest member, which is the third brightest star in the
constellation Cygnus, is actually a close binary itself. Also in the Cygnus constellation is
Cygnus X-1, an
X-ray source considered to be a
black hole. It is a
high-mass X-ray binary, with the optical counterpart being a
variable star.
[64] Another famous binary is
Sirius, the brightest star in the night time sky, with a visual
apparent magnitude of -1.46. It is located in the constellation
Canis Major. In 1844
Friedrich Bessel deduced that Sirius was a binary. In 1862
Alvan Graham Clark discovered the companion (Sirius B; the visible star is Sirius A). In 1915 astronomers at the
Mount Wilson Observatory determined that Sirius B was a
white dwarf, the first to be discovered. In 2005, using the
Hubble Space Telescope, astronomers determined Sirius B to be in diameter, with a mass that is 98% of the
Sun.
[65]
An example of an eclipsing binary is
Epsilon Aurigae in the constellation
Auriga. The visible component belongs to the
spectral class F0, the other (eclipsing) component is not visible. The next such eclipse occurs from 2009–2011, and it is hoped that the extensive observations that will likely be carried out may yield further insights into the nature of this system. Another eclipsing binary is
Beta Lyrae, which is a semi-detached binary star system in the constellation of
Lyra.
Other interesting binaries include
61 Cygni (a binary in the constellation
Cygnus, composed of two
K class (orange) main sequence stars, 61 Cygni A and 61 Cygni B, which is known for its large
proper motion),
Procyon (the brightest star in the constellation
Canis Minor and the eighth brightest star in the night time sky, which is a binary consisting of the main star with a faint
white dwarf companion), SS Lacertae (an eclipsing binary which stopped eclipsing), V907 Sco (an eclipsing binary which stopped, restarted, then stopped again) and
BG Geminorum (an eclipsing binary which is thought to contain a black hole with a K0 star in orbit around it).
Multiple star examples
Systems with more than two stars are termed
multiple stars.
Algol is the most famous ternary (long thought to be a binary), located in the constellation
Perseus. Two components of the system eclipse each other, the variation in the intensity of Algol first being recorded in 1670 by
Geminiano Montanari. The name Algol means "demon star" (from
Arabic ?????
al-ghul
), which was probably given due to its peculiar behavior. Another visible ternary is
Alpha Centauri, in the southern constellation of
Centaurus, which contains the
fourth brightest star in the night sky, with an
apparent visual magnitude of -0.01. This system also underscores the fact that binaries need not be discounted in the search for habitable planets. Alpha Centauri A and B have an 11 AU distance at closest approach, and both should have stable habitable zones.
[66]
There are also examples of systems beyond ternaries:
Castor is a sextuple star system, which is the second brightest star in the constellation
Gemini and one of the brightest stars in the nighttime sky. Astronomically, Castor was discovered to be a visual binary in 1719. Each of the components of Castor is itself a spectroscopic binary. Castor also has a faint and widely separated companion, which is also a spectroscopic binary.
See also
- Binary stars in fiction
- Rotational Brownian motion
Notes and references
- Pronounced {{IPA-en|'ko?mi?z|}}
- p. 481, Catalogue of 500 New Nebulae, Nebulous Stars, Planetary Nebulae, and Clusters of Stars; With Remarks on the Construction of the Heavens, William Herschel, ''Philosophical Transactions of the Royal Society of London'','''92''' (1802), pp. 477–528.
- Double Stars
- Visual Binaries
- Binary and Variable Stars
- Double Stars
- ''The Binary Stars'', Robert Grant Aitken, New York: Dover, 1964, p. ix.
- Double Stars
- ''The Binary Stars'', Robert Grant Aitken, New York: Dover, 1964, p. 1.
- Vol. 1, part 1, p. 422, ''Almagestum Novum'', Giovanni Battista Riccioli, Bononiae: Ex typographia haeredis Victorij Benatij, 1651.
- A New View of Mizar, Leos Ondra, accessed on line May 26, 2007.
- pp. 10–11, ''Observing and Measuring Double Stars'', Bob Argyle, ed., London: Springer, 2004, ISBN 1-85233-558-0.
- pp. 249–250, An Inquiry into the Probable Parallax, and Magnitude of the Fixed Stars, from the Quantity of Light Which They Afford us, and the Particular Circumstances of Their Situation, John Michell,''Philosophical Transactions (1683-1775)'' '''57''' (1767), pp. 234–264.
- Double Stars
- Account of the Changes That Have Happened, during the Last Twenty-Five Years, in the Relative Situation of Double-Stars; With an Investigation of the Cause to Which They Are Owing, William Herschel, ''Philosophical Transactions of the Royal Society of London'' '''93''' (1803), pp. 339–382.
- p. 291, French astronomers, visual double stars and the double stars working group of the Société Astronomique de France, E. Soulié, ''The Third Pacific Rim Conference on Recent Development of Binary Star Research'', proceedings of a conference sponsored by Chiang Mai University, Thai Astronomical Society and the University of Nebraska-Lincoln held in Chiang Mai, Thailand, 26 October-1 November 1995, ''ASP Conference Series'' '''130''' (1997), ed. Kam-Ching Leung, pp. 291–294, {{bibcode|1997ASPC..130..291S}}.
- "Introduction and Growth of the WDS", The Washington Double Star Catalog, Brian D. Mason, Gary L. Wycoff, and William I. Hartkopf, Astrometry Department, United States Naval Observatory, accessed on line August 20, 2008.
- Sixth Catalog of Orbits of Visual Binary Stars, William I. Hartkopf and Brian D. Mason, United States Naval Observatory, accessed on line August 20, 2008.
- The Washington Double Star Catalog, Brian D. Mason, Gary L. Wycoff, and William I. Hartkopf, United States Naval Observatory. Accessed on line December 20, 2008.
- Double Stars
- Binary Stars
- ''The Binary Stars'', Robert Grant Aitken, New York: Dover, 1964, p. 41.
- Stellar Masses
- Light Curves and Their Secrets
- Eclipsing Binary Simulation
- Eclipsing Binary Stars
- Eclipsing Binary Stars
- Eclipsing Binaries: Tools for Calibrating the Extragalactic Distance Scale
- Binary Stars
- Binary Neutron Star Collision
- Inversion formula for determining parameters of an astrometric binary
- Astrometric Binaries
- Roche model
- Galactic distribution of merging neutron stars and black holes
- Cataclysmic Variables
- Neutron Star X-ray binaries, ''A Systematic Search of New X-ray Pulsators in ROSAT Fields'', Gian Luca Israel, Ph. D. thesis, Trieste, October 1996.
- On the orbital and physical parameters of the HDE 226868/Cygnus X-1 binary system
- Black Holes, Imagine the Universe!, NASA. Accessed on line August 22, 2008.
- Double Stars
- Binary and Multiple Star Systems
- pp. 307–308, ''Observing and Measuring Double Stars'', Bob Argyle, ed., London: Springer, 2004, ISBN 1-85233-558-0.
- Entry 14396-6050, discoverer code RHD 1AB,The Washington Double Star Catalog, United States Naval Observatory. Accessed on line August 20, 2008.
- References and discoverer codes, The Washington Double Star Catalog, United States Naval Observatory. Accessed on line August 20, 2008.
- The Realm of Interacting Binary Stars
- The Formation of Common-Envelope, Pre-Main-Sequence Binary Stars
- The Roche Problem
- "Contact Binary Star Envelopes" by Jeff Bryant, Wolfram Demonstrations Project.
- "Mass Transfer in Binary Star Systems" by Jeff Bryant with Waylena McCully, Wolfram Demonstrations Project.
- Mass transfer and accretion in close binaries - A review
- The Brightest Binaries
- Mass Transfer in the Binary Star Algol
- Enigma of Runaway Stars Solved
- The Origin of Runaway Stars
- Encyclopaedia of Astronomy and Astrophysics
- Cosmogonical Processes
- Relativistic outflows from X-ray binaries (a.k.a. `Microquasars')]
- Most Milky Way Stars Are Single, Harvard-Smithsonian Center for Astrophysics
- Binary Star Formation from Rotational Fragmentation
- Birth and Death of Stars
- Binary Star Motions
- Terrestrial Planet Formation in Binary Star Systems
- Planets with Two Suns Likely Common
- Binarity of transit host stars - Implications for planetary parameters
- The First Black Hole
- Hubble finds mass of white dwarf
- Planetary Systems can form around Binary Stars